Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
نویسندگان
چکیده
The ability to specifically attach chemical probes to individual proteins represents a powerful approach to the study and manipulation of protein function in living cells. It provides a simple, robust and versatile approach to the imaging of fusion proteins in a wide range of experimental settings. However, a potential drawback of detection using chemical probes is the fluorescence background from unreacted or nonspecifically bound probes. In this report we present the design and application of novel fluorogenic probes for labeling SNAP-tag fusion proteins in living cells. SNAP-tag is an engineered variant of the human repair protein O(6)-alkylguanine-DNA alkyltransferase (hAGT) that covalently reacts with benzylguanine derivatives. Reporter groups attached to the benzyl moiety become covalently attached to the SNAP tag while the guanine acts as a leaving group. Incorporation of a quencher on the guanine group ensures that the benzylguanine probe becomes highly fluorescent only upon labeling of the SNAP-tag protein. We describe the use of intramolecularly quenched probes for wash-free labeling of cell surface-localized epidermal growth factor receptor (EGFR) fused to SNAP-tag and for direct quantification of SNAP-tagged β-tubulin in cell lysates. In addition, we have characterized a fast-labeling variant of SNAP-tag, termed SNAP(f), which displays up to a tenfold increase in its reactivity towards benzylguanine substrates. The presented data demonstrate that the combination of SNAP(f) and the fluorogenic substrates greatly reduces the background fluorescence for labeling and imaging applications. This approach enables highly sensitive spatiotemporal investigation of protein dynamics in living cells.
منابع مشابه
The Cation−π Interaction Enables a Halo-Tag Fluorogenic Probe for Fast No-Wash Live Cell Imaging and Gel-Free Protein Quantification
The design of fluorogenic probes for a Halo tag is highly desirable but challenging. Previous work achieved this goal by controlling the chemical switch of spirolactones upon the covalent conjugation between the Halo tag and probes or by incorporating a "channel dye" into the substrate binding tunnel of the Halo tag. In this work, we have developed a novel class of Halo-tag fluorogenic probes t...
متن کاملFluorescent turn-on probes for wash-free mRNA imaging via covalent site-specific enzymatic labeling.
Investigating the many roles RNA plays in cellular regulation and function has increased demand for tools to explore RNA tracking and localization within cells. Our recently reported RNA-TAG (transglycosylation at guanine) approach uses an RNA-modifying enzyme, tRNA-guanine transglycosylase (TGT), to accomplish covalent labeling of an RNA of interest with fluorescent tracking agents in a highly...
متن کاملGreen- to far-red-emitting fluorogenic tetrazine probes - synthetic access and no-wash protein imaging inside living cells.
Fluorogenic probes for bioorthogonal labeling chemistry are highly beneficial to reduce background signal in fluorescence microscopy imaging. 1,2,4,5-Tetrazines are known substrates for the bioorthogonal inverse electron demand Diels-Alder reaction (DAinv) and tetrazine substituted fluorophores can exhibit fluorogenic properties. Herein, we report the synthesis of a palette of novel fluorogenic...
متن کاملFluorogenic Labeling Strategies for Biological Imaging
The spatiotemporal fluorescence imaging of biological processes requires effective tools to label intracellular biomolecules in living systems. This review presents a brief overview of recent labeling strategies that permits one to make protein and RNA strongly fluorescent using synthetic fluorogenic probes. Genetically encoded tags selectively binding the exogenously applied molecules ensure h...
متن کاملFluorogenic Probes for Multicolor Imaging in Living Cells.
Here we present a far-red, silicon-rhodamine-based fluorophore (SiR700) for live-cell multicolor imaging. SiR700 has excitation and emission maxima at 690 and 715 nm, respectively. SiR700-based probes for F-actin, microtubules, lysosomes, and SNAP-tag are fluorogenic, cell-permeable, and compatible with superresolution microscopy. In conjunction with probes based on the previously introduced ca...
متن کامل